
JOURNAL OF COIUPUTATIONAL. PRYSICS %,417-424 (1979) 

Note 

On the Properties of Collision Probability Integrals 
in Annular Geometry. II. Evaluation 

1. INTRODUCTION 

To calculate neutron flux distributions in infinitely long annular regions, the inner- 
outer and outer-outer transmission probabilities Pro and Poe are required. Efficient 
algorithms for the computation of these probabilities as functions of two variables 
(the ratio of inner/outer radii K, and cross section z) are given for 0 < K < 1 and all 
0 < Z, with fractional errors less than 2 x 1O-6. 

In a previous paper [l], referred to as I, the analytic evaluation of two integrals 
fundamental to neutron transport calculations in annular geometry was derived, The 
integrals were expressed as an infinite sum of Meijer’s G-function. The purpose of 
this note is to report an efficient method for the numerical evaluation of two of the 
most commonly calculated probabilities, poo and pie, where 

K&,(2x cos t?) cos 8 de, 

Pi0 = 4 I”‘“-‘” Ki,(xR) cos 6 de, 
= 0 

R = (1 - K2 sin2 @1/2 - K COS 8, 

and Ki, are the Bickley-Naylor functions, together with 0 < K < 1 and x > 0. 
These probabilities form the basis of the J* method [2, 31 of solving the transport 

equation and certain of them are used extensively in transport codes [4-81 Methods 
for numerical evaluation are given in [4, 9, lo], all of which are accurate to two or 
three significant figures over a range of both variables, but break down [4] in certain 
limits. Numerical integration can be used [6, 7, 111 but in typical problems where 
the routines are called several thousand times, this can be slow and expensive [7, 111. 

The analytic expansions from I have been used to isolate the singularities of the 
integrals in both variables, and the remaining functions-represented by infinite 
series-were fitted with rational REMES minimax approximations [12, 131 in one 
variable, demanding a relative accuracy in the final answer to better than 2 x 10qs 
over all physical ranges of both variables. All integrations to check the claimed 
accuracy of the fits were performed using the CADRE algorithm [14], and a Bickley- 
Naylor minimax fit [15] accurate to 13 significant digits. 
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To summarize, computational accuracy in PoO and Pi0 to better than 2 parts in lo5 
is claimed for any combination of radius and cross section in the range 0 < K < 1 
and 0 <Z: The following sections deal with the evaluation of PO0 and Pie, 
respectively. 

2. EVALUATION OF PO0 

It is convenient to employ different representations for Poe according to the value 
of z and K. Explicitly, for 0 < K < 1 and 0 < z < 1.4, using Eq. (4.3) of Ref. [I], 
A2 = 1 - K2, z = Xh and W = 2z2/(1 + K), 

PO0 = (1 - K) [ 1 + 2W(1 - i(l - K)) + W’/“&(K) 

+ W312 i W’(ffi(K) + Fi(K) log W)]. 
i=O 

(2.1) 

Analytic expressions and minimax approximations to the function Fi(~) and H,(K) are 
given elsewhere [16], and we find that 

Z = [3.65852z + 0.8781 

gives sufficient terms in the series to achieve a fractional error of less than 1 x 1O-5 
where [ ] means the greatest integer less than the bracketed quantity. 

As the value of Z increases in Eq. (2.1), the functions get more difficult to fit to a 
constant accuracy, without unduly increasing the order of the rational polynomials. 
However, the contribution of the higher-order terms to the accuracy of the final 
answer decreases, so we accept lower accuracyfitsfor higher-order terms. This stratagem 
is used throughout, and results in a slight loss of precision from the goal of five 
significant digits, but repays itself by the resulting efficient algorithms. It is worth 
noting, that if the geometrical functions Fi(~) and I&(K) are precomputed, considerable 
arithmetic will be saved if z remains in the range 0 9 z < 1.4 throughout an ensuing 
burnup and/or slowing-down calculation. 

Finally, note that for w M 0, the variable w will underflow faster than log w will 
overflow in Eq. (2.1), and so the product w aI2 log w has no numerical singularities if a 
test is made for w = 0. This remark is true for all logarithmic singularities that super- 
ficially appear in this note. 

For 1.4 -C z < 7.5, the minimum number of terms in the series is found by using 
expansions about he = 1 or h2 = 0. For 0 < X2 < 0.696, Eq. (4.3) of Ref. [l] 
suggests 

PO0 = (1 - K) i (1 - K)“&(W), 
z=o 

(2.2) 
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where 

Rational minimax approximations to A,(w) are given in [16]. The integer Z1 in Eq. (2.2) 
may be chosen according to the value of w and K by means of empirical approximations 
1161. 

For 1.4 < z < 7.5 and 0.696 B h2 < 1, we find from Eq. (4.1) of Ref. [l] 

PO0 = P&X) - h2K eXp(-2Z) Z-l/’ ; (““Z)” B,(Z)(Z - Z,(l)), 
Z=O 

(2.3) 

where 

-l/2 - 1; 2 

B,(z) = 
exp(2z) z1/2-z GE tz2 lo, l/2,3/3; -l/2 1 

w + 1) (z - ZOW) 

and 

P&x) = e2 3*1 G2.4 tx2 IO, 1,2,0;/4; -l/2 1 (2.4) 

is the transmission probability for a cylinder. Again, approximations to B,(z), PcyL(x) 
and Z2 may be found elsewhere [16]. 

For x > 7.7, it is possible to derive an asymptotic form using G-function properties 
[17]. We find 

I3 r(j + 0 m + 0 wi + 0 P&x) = +/2x-2 c 
I=0 Y(3 + 1) x21 (2.5) 

and tables of Z3 are given in Ref. [16]. 
Finally, for z > 7.5, an asymptotic form for PO* is found from Eq. (5.1) or (4.3) of I. 

Since the asymptotic series for Poe and P c&x) coincide, it is convenient to use Eq. 
(4.3) of I and write 

poo = pcuL(x) _ W”3H&37y4 
(2.6) 

K 

giving the required accuracy for all values of h2 when z > 7.5. We have tested these 
algorithms using 40 000 pseudo-random values of 0 9 x and 0 < K Q 1. The average 
time required for one evaluation of PO0 was 0.233 ms on a CDC 6600 computer, 
about 76 times faster than numerical integration to the same accuracy. Of these 
cases, 0.3 % had a fractional error greater than lo- 5, the largest fractional error 
observed was 1.66 x 10A5. 
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3. EVALUATION OF Pi0 

The properties of pi0 are very different from Poe and the function is more difficult 
to calculate. Two formulas obtained from I are employed. The first-Eq. (3.9) of 
Ref. [II-is 

Pi0 = ; [ $ 
l-0 

(-q)l+1’2 g,(z) - i: (-r]y hl(z)] 
LO 

with 

7j = -K2/h2, 

and 

G4 = gw,(z) - %I/~ 

The second is Eq. (5.6) of I which gives 

where 

and 

Pi0 = p&)(4 -JQ, 

9l = C y2n C e,(r) Yf+‘(zy”“) 
n r 

with 

,B,“+r(zy1’2) = 4 Ia t2(n+7-1)Ki2(Zy”2t)(t2 - 1)-1’2 dt 

= & G4,:I: (+ ) 1 2 2 3/;,;,;,;, ;,2;)9 

Y;+‘(z, y) = $ j-m t2(lz+r-1)~j2(~y1’2t)(f2 - 1)-1’2 dt, .-W 
en(r) = C-Y rc2 

l-y4 + n - r) 
-r)F(&F(n-rfl)’ 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7a) 

(3.7b) 

(3.8) 

and 

Y = (1 - ‘d/(1 + K> 
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It is convenient to-s&divide the segment of the (G, z) plane of interest into six regions 
detied in Ref. [ 161, and described below. In each region, a different numerical evalua- 
tion method is appropriate, as detailed in the following sections labeled A-F corre- 
sponding to the respective areas. 

Case A K~ w 0, z & 5.0 

The basic formula here is Eq. (3. l), which converges slowly for increasing values of 
V,L In addition, the functions gl(z) are oscillatory, which makes it difficult to determine 
the integer I simply, and the power series expansion of gr(z) suffers from severe 
numerical instability. Accordingly, invoke the recursion formula [ 171 

gl+lc4 = k?lW - 41 + 1) g*(z) + MmMu + w + 2)). (3.9 

A similar result holds for /z~+~(z) according to Eq. (3.3). From Ref. [l] identify 

go(z) = 2&(z), 

ho(z) = -(4/z) G(z), 

where H,,(z) are the Bickley-Nayler functions, which obey 

$ Kim(z) = (-)” f&&z) 

and negative order functions can be calculated by the (numerically 
formula 

(3.10) 

(3.11) 

(3.12) 

stable) recursion 

Kin--B(z) = + Kin(z) - + Kin-Z(z) + I&-&). (3.13) 

So taking I = 10 in Eq. (3.1), applying Eqs. (3.9)-(3.13) to each of g,(z) and h,(z) 
and evaluating the sum algebraically [18], it is possible to express PC0 in the form 

Pi* = *Mi,(z) Po(z, 7) + G(z) P,(z, 17) + &(z) P&, $1, (3.14) 

where P$(z, 7) are polynomials in z, 7 and (-$‘I”. 
The analytic (unnested) form of these functions is given in Ref. [la]. 

Case B. 0 < K~ Q 0.5, z 5 5.0 

In this range, employ the series expansions for g!(z) and h,(z) in Eq. (3.1) and trans- 
pose the sums. The ,result for y = 2~” is 

Pi0 = 1 + Y”~ Q-,(q) + Y”~&~I) + Y i YUW - log ygl($l] , (3.15) 
i=O 
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where Q and R, functions of the geometry only, may be precomputed in some applica- 
tions. Analytic expressions and rational minimax approximations for Q(q) and R(v), 
and estimates of Z in Eq. (3.15) are given in Ref. [16]. 

Case C. 0.5 < ICY < l., z 5 5.0 

In this range, perform the analytic continuation 7 + l/7 as outlined in Eq. (4.5) of I. 
The result (using y = $z2) is 

Pi0 = 1 + y1/2 [(+“2 T-, (J-) + y’i2S-1 ($ 

- h2y i yi [Sf ($ - logyT, (‘)]I. 
i=O rl 

(3.16) 

Rational minimax approximations to and analytic expressions for the functions S 
and T and estimates of the values of Zin Eq. (3.16) are recorded in Ref. [16]. 

Case D. ~~ > 0, z intermediate 

Here we discuss the evaluation of Pi0 for intermediate values of z; the governing 
equation is (3.4). As indicated in I,’ the function Y2 vanishes like exp(--2) whereas 
Y1 has the asymptotic exponential behavior exp(-zy112). 

Thus for some area of the plane, Y2 does not contribute, and so use Eq. (3.5) 
to write (setting u = zy1i2) 

Pi0 = PI” = (qq3yyfl) + p 9l’(u) 

+& ; y2n4”(u) [ ;; ; ;i’ - y2 Qn - $1 
’ (3.17) 

?I==2 T(n - 1) 11 
where values of Z1 and the identification of the functions J1”(v) is recorded in Ref. [ 161. 

Case E. K2 > 0, z intermediate 

In that region of the plane in which Y2 contributes, it is possible to identify 

Y2n = yl-* exp(-z) z-3/2 
c m Y1 

I, fLl(4 
1 * 

using Eq. (3.8). The triple sums in Eq. (3.6) are then reordered and the result is 

Y2 = y exp(-z) z-“12 ; y”%*(z) 
9l=O 

(3.19) 
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together with 

pi* = pp - (J&E) &y2 

because of Eqs. (3.17) and (3.4). 
The functions H,-r(z) and tin(z) are identified, rational minimax approximations 

to Xn(z) are given, and estimates of values of I, in Eq. (3.19) are recorded in Ref. [ 161. 

Case F. K2 > 0, zy112 large 

In this range of values the only contributions come from Y1 in Eq. (3.4). Extract 
the first few terms of the asymptotic series for the G-function defined in Eq. (3.7b) and 
analytically [18] sum the series (3.5) over n and r. The result is an asymptotic series 
given by 

(3.21) 

where P2,(y) is a polynomial in y of degree 2n identified in Ref. [16] where required 
values of Z that depend on the value of ZJ = zy112 are also given. 

The algorithms described in this section were used in a computer routine to cal- 
culate Pi0 using pseudo-random values of 0 < x and 0 < K < 1. The average time 
for one calculation of Pi0 (with no precalculation of geometrically invariant functions) 
was 0.67 ms on a CDC 6600 computer, about 40 times faster than simple numerical 
integration with the same accuracy. Of 80 000 cases, 0.15 ‘A had a fractional error 
greater than 1 x 10-5; the largest fractional error observed was 0.19 x 10-4. 

4. SUMMARY 

Algorithms are given which permit the swift and accurate evaluation of the collision 
probabilities Pi0 and PoO as a function of two variables lying in the range 0 < K < 1 
and 0 < z. The method gives results which are correct to a fractional error of less 
than 2 x 1O-6; six other probabilities may be evaluated simultaneously with no loss of 
significant figures. 

The method is designed to take advantage of characteristics of a large set of prob- 
lems for which the probabilities are required. In these cases-nuclear transmutation 
or neutron slowing-down-the geometry remains invariant and only the cross section 
varies. Precalculation of geometrical quantities thus leads to extremely efficient 
evaluations because in a majority of practical cases the variable z is small and only a 
few terms in the series are needed. 

For practical applications however, the method is superior in both speed and 
accuracy in comparison to contemporary techniques of evaluation, and may have 
potential application to other functions of two variables (e.g. Sievert’s integral). 

5W33/3-9 
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